The spin relaxation time in solids is determined by several competing energy scales and processes, and distinct methods are called for to analyze the various regimes. We present a stochastic model for the spin dynamics in solids which is equivalent to solv ...
Molybdenum ditelluride, MoTe2, is a versatile material where the topological phase can be readily tuned by manipulating the associated structural phase transition. The fine details of the band structure of MoTe2, key to understanding its topological proper ...
We present a study of a simple model antiferromagnet consisting of a sum of nearest-neighbor SO(N) singlet projectors on the kagome lattice. Our model shares some features with the popular S = 1/2 kagome antiferromagnet but is specifically designed to be f ...
TaIrTe4 is an example of a candidate Weyl type-II semimetal with a minimal possible number of Weyl nodes. Four nodes are reported to exist in a single plane in k space. The existence of a conical dispersion linked toWeyl nodes has yet to be shown experimen ...
We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled, thin optical barriers on top of a ballistic c ...
Symmetry and topology are fundamental properties of nature. Mathematics provides us with a general framework to understand these concepts. On one side, symmetry describes the invariance properties of an object for specific transformations. On the other sid ...
We studied the changes in the optical properties of the RVO3 series (R = Sr, Ca, La, Y) using band structure calculations. These oxides present a transition from a non-magnetic metallic phase in SrVO3-CaVO3, to an antiferromagnetic insulator state in LaVO3 ...
Elementary excitations in condensed matter capture the complex many-body dynamics of interacting basic entities in a simple quasiparticle picture. In magnetic systems the most established quasiparticles are magnons, collective excitations that reside in or ...
Using linear flavor-wave theory (LFWT) and auxiliary field quantum Monte Carlo (QMC), we investigate the properties of the SU(4) Heisenberg model on the anisotropic square lattice in the fully antisymmetric six-dimensional irreducible representation, a mod ...
To trace the origin of time-reversal symmetry breaking (TRSB) in Re-based superconductors, we performed comparative muon-spin rotation and relaxation (mu SR) studies of superconducting noncentrosymmetric Re0.82Nb0.18 (T-c = 8.8 K) and centrosymmetric Re (T ...