Résumé
In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure. When the atom is of the same type as those already present they are known as a self-interstitial defect. Alternatively, small atoms in some crystals may occupy interstitial sites, such as hydrogen in palladium. Interstitials can be produced by bombarding a crystal with elementary particles having energy above the displacement threshold for that crystal, but they may also exist in small concentrations in thermodynamic equilibrium. The presence of interstitial defects can modify the physical and chemical properties of a material. The idea of interstitial compounds was started in the late 1930s and they are often called Hagg phases after Hägg. Transition metals generally crystallise in either the hexagonal close packed or face centered cubic structures, both of which can be considered to be made up of layers of hexagonally close packed atoms. In both of these very similar lattices there are two sorts of interstice, or hole: Two tetrahedral holes per metal atom, i.e. the hole is between four metal atoms One octahedral hole per metal atom, i.e. the hole is between six metal atoms It was suggested by early workers that: the metal lattice was relatively unaffected by the interstitial atom the electrical conductivity was comparable to that of the pure metal there was a range of composition the type of interstice occupied was determined by the size of the atom These were not viewed as compounds, but rather as solutions, of say carbon, in the metal lattice, with a limiting upper “concentration” of the smaller atom that was determined by the number of interstices available. A more detailed knowledge of the structures of metals, and binary and ternary phases of metals and non metals shows that: generally at low concentrations of the small atom, the phase can be described as a solution, and this approximates to the historical description of an interstitial compound above.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
MICRO-566: Large-area electronics: devices and materials
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
EE-567: Semiconductor devices II
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts. Remark: at least 5 students should be enrolled for the course to be g
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Afficher plus
Séances de cours associées (33)
Transport et recombinaison
Explore le transport, la recombinaison, la conductivité sombre et la photoconductivité dans les matériaux électroniques, soulignant l'importance des mécanismes de recombinaison dans les semi-conducteurs.
Excitons, luminescence et LED
Explore les excitons, la luminescence et les LED, y compris leur formation, leur impact sur la densité des porteurs, et les principes de travail.
Transformations ordre-désordre
Explore les structures d'ordre dominées par les électrons, l'observation des super-réseaux et l'impact des transformations d'ordre désordonné sur les propriétés mécaniques.
Afficher plus
Publications associées (151)