La géométrie moléculaire ou structure moléculaire désigne l'arrangement 3D des atomes dans une molécule. .
La géométrie moléculaire peut être établie à l'aide de différents outils, dont la spectroscopie et la diffraction. Les spectroscopies infrarouge, rotationnelle et Raman peuvent donner des informations relativement à la géométrie d'une molécule grâce aux absorbances vibrationnelles et rotationnelles. Les diffractométries de rayons X, de neutrons et des électrons peuvent donner des informations à propos des solides cristallins. La diffraction de gaz d'électrons peut être utilisée pour de petites molécules à l'état gazeux. La RMN et le FRET peuvent servir à obtenir d'autres informations, telles la distance relative, les angles dihédraux, les angles et la connectivité. La géométrie des molécules est plus facile à obtenir lorsqu'elles sont à basse température. Les plus grosses molécules existent souvent sous plusieurs formes géométriques stables (conformérie). Les géométries peuvent aussi être calculées avec une grande précision par la méthode ab initio de chimie quantique. La géométrie moléculaire peut aussi être différente selon la phase de la molécule.
La géométrie d'une molécule dépend du nombre d'atome(s) ou de « doublet non liant » reliés à l'atome central de la molécule. Les atomes périphériques subissant une répulsion électronique, qui les force à se repousser les uns les autres, vont à se positionner le plus loin possible les uns des autres. Il existe cinq géométries, selon le nombre de « composants » (atome(s) et doublets non liants) de la molécule qui sont liés à l'atome central :
1 composant : positionnement non déterminé car pas de répulsion entre les atomes périphériques ;
2 composants : positionnement linéaire selon un angle de 180° entre les atomes périphériques si la molécule est apolaire ou en coude selon un angle de 120° entre les atomes périphérique si la molécule est polarisée ;
3 composants : positionnement linéaire selon un angle de 120° entre les atomes périphériques ;
4 composants : positionnement pyramidal selon un angle de 109° entre les atomes périphériques.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La théorie VSEPR (sigle de l'anglais Valence Shell Electron Pair Repulsion, en français RPECV : « répulsion des paires électroniques de la couche de valence ») est une méthode destinée à prédire la géométrie des molécules en s'appuyant sur la théorie de la répulsion des électrons de la couche de valence. Elle est aussi connue sous le nom de « théorie de Gillespie » (ou théorie de Nyholm-Gillespie). Ce sont les Britanniques Nevil Sidgwick et Herbert Powell de l'Université d'Oxford qui ont proposé en 1940 une corrélation entre la géométrie moléculaire et le nombre des électrons de valence.
En chimie quantique, l'hybridation des orbitales atomiques est le mélange des orbitales atomiques d'un atome appartenant à la même couche électronique de manière à former de nouvelles orbitales qui permettent de mieux décrire qualitativement les liaisons entre atomes. Les orbitales hybrides sont très utiles pour expliquer la forme des orbitales moléculaires. Bien que parfois enseignées avec la théorie VSEPR (Valence Shell Electron Pair Repulsion), liaison de valence et hybridation sont en fait indépendantes du VSEPR.
vignette|Représentation de la structure chimique de l'acide acétique. L'hydrogène est en blanc, le carbone est en gris et l'oxygène est en rouge. La structure chimique d'un système réfère à la fois à sa topologie moléculaire, à sa géométrie (géométrie moléculaire ou groupe d'espace pour un cristal) et à sa structure électronique. La topologie moléculaire désigne l’enchaînement des atomes et des liaisons qui les lient sans prendre en compte la géométrie (longueur des liaisons, angles de valence, angles dièdres).
This course instructs students in the use of advanced computational models and simulations in cell biology. The importance of dimensionality, symmetry and conservation in models of self-assembly, memb
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Machine learning has provided a means to accelerate early-stage drug discovery by combining molecule generation and filtering steps in a single architecture that leverages the experience and design preferences of medicinal chemists. However, designing mach ...
Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of thesmallest optoelectronic devices possible, consisting of individual molecules or a group of moleculesthat serve as the active element sandwiched between co ...
Base excision repair enzymes (BERs) detect and repair oxidative DNA damage with efficacy despite the small size of the defects and their often only minor structural impact. A charge transfer (CT) model for rapid scanning of DNA stretches has been evoked to ...
Explore la force de liaison covalente, les structures de résonance, les longueurs de liaison, les composés hypervalents, les radicaux et les formes moléculaires.
Explore les balayages d'énergie potentiels sur des molécules complexes et montre comment calculer des barrières de rotation et visualiser des profils d'énergie.