EE-202: Electronics ILes concepts de base permettant de comprendre, d'analyser et de concevoir les circuits à base d'AmpliOp, dédiés à l'acquisition et conditionnement des signaux analogiques sont traités en théorie et pr
MICRO-520: Laser microprocessingThe physical principles of laser light materials interactions are introduced with a large number of industrial application examples. Materials processing lasers are developing further and further, the
PHYS-425: Quantum physics IIITo introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics
BIO-373: Genetics and genomicsThe theoretical part of this course covers classical genetics and contemporary genomics. Because bioinformatics has become important for genomic research, the course also includes practical applicatio
MATH-225: Topology II - fundamental groupsOn étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
ME-232: Mechanics of structures (For GM)L'étudiant acquiert les bases de l'analyse des contraintes et déformation des poutres élastiques linéaires soumises à la traction, cisaillement, torsion, flexion; les coefficients d'influence et la m
EE-111: Circuits and systemsCe cours présente une introduction à la théorie et aux méthodes d'analyse et de résolution des circuits électriques.
AR-416: UE N : Constructing the viewThis course focuses on the production of utopian scenarios using experimental composition techniques. By means of digital montage, the fictitious scenes are meaningfully conveyed in a series of images
MATH-493: Applied biostatisticsThis course covers topics in applied biostatistics, with an emphasis on practical aspects of data analysis using R statistical software. Topics include types of studies and their design and analysis,
MATH-207(c): Analysis IV (for EL, GM, MX)This course serves as an introduction to the theory of complex analysis, Fourier series and Fourier transforms, the Laplace transform, with applications to the theory of ordinary and partial different