EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
ENG-209: Data science for engineers with PythonCe cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an