CS-526: Learning theoryMachine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
ME-213: Programmation pour ingénieurMettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
MATH-251(c): Numerical analysisLe cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
ME-373: Finite element modelling and simulationL'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
PHYS-426: Quantum physics IVIntroduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,