CS-233: Introduction to machine learningMachine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
MATH-413: Statistics for data scienceStatistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
MATH-251(e): Numerical analysisLe cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, l'approximation de fonctions, l'intégration et la dér
PHYS-339: Advanced computational physicsThe course covers dense/sparse linear algebra, variational methods in quantum mechanics, and Monte Carlo techniques. Students implement algorithms for complex physical problems. Combines theory with c
MATH-506: Topology IV.b - cohomology ringsSingular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MICRO-310(a): Signals and systems I (for MT)Présentation des concepts et des outils de base pour la caractérisation des signaux ainsi que pour l'analyse et la synthèse des systèmes linéaires (filtres ou canaux de transmission). Application de c