MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
PHYS-210: Physique numérique (pour SPH)Aborder, formuler et résoudre des problèmes de physique en utilisant des méthodes numériques élémentaires. Comprendre les avantages et les limites de ces méthodes (stabilité, convergence). Illustrer d
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
CS-250: Algorithms IThe students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
MICRO-310(a): Signals and systems I (for MT)Présentation des concepts et des outils de base pour la caractérisation des signaux ainsi que pour l'analyse et la synthèse des systèmes linéaires (filtres ou canaux de transmission). Application de c
EE-205: Signals and systems (for EL)Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
EE-559: Deep learningThis course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.