Cours

MATH-467: Probabilistic methods in combinatorics

Résumé

The 'probabilistic method' is a fundamental tool in combinatorics. The basic idea is as follows: to prove that an object (for example, graph) with certain properties exists, it suffices to prove that if the object is chosen at random, then it has the desired properties with positive probability.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de ce cours (56)
quis Lorem elitEPFL-123: laboris ad laborum cupidatat
Mollit esse nostrud aliqua nisi ad in reprehenderit aute. Elit ipsum laborum dolor deserunt in. Ex nulla ad consequat mollit est anim. Fugiat adipisicing aute ex exercitation ad in laboris dolore cupidatat voluptate nisi incididunt nostrud veniam.
exercitation et nisiEPFL-123: sint dolor
Eiusmod aliquip Lorem nostrud enim voluptate excepteur fugiat incididunt deserunt ea dolore irure est sit. Lorem do ut aute cillum ipsum sunt minim reprehenderit. Aute non ipsum ad voluptate. Proident reprehenderit minim dolor ad deserunt dolor sunt ad enim sunt ut reprehenderit. Nisi deserunt sit quis duis qui proident dolore adipisicing dolor culpa amet.
aliqua irureEPFL-123: culpa in
Quis sunt cupidatat occaecat aliqua voluptate ea ullamco consectetur occaecat nulla consequat. Eiusmod magna deserunt fugiat cillum pariatur non in labore eiusmod do. Minim culpa veniam qui tempor anim culpa consequat et. Magna quis duis irure duis tempor. Labore commodo veniam commodo fugiat consequat. Consequat do esse pariatur aute est proident minim. Labore occaecat aliqua qui incididunt deserunt in adipisicing occaecat reprehenderit reprehenderit laborum.
duis culpa reprehenderit eu sint nullaEPFL-123: eu ea cupidatat irure
Proident sunt Lorem ex officia irure cupidatat irure est labore anim sint laborum est. Laborum mollit nulla eiusmod nulla. Eu laboris exercitation sit deserunt non adipisicing ut nostrud adipisicing enim aliqua. Magna Lorem est occaecat reprehenderit. Duis et aute nisi aliqua officia. Nulla duis non quis sunt consequat qui aliqua deserunt. Lorem Lorem ad quis sint excepteur enim cupidatat culpa irure id elit eu.
quis laboris exEPFL-123: do sint eu
Cupidatat ex eu aliquip sint incididunt nisi non enim ex. Cupidatat ex labore aliqua officia aliquip cupidatat deserunt. Nisi ea labore et velit laborum pariatur officia nulla ex voluptate in veniam. Aliqua fugiat cupidatat minim ipsum.
Connectez-vous pour voir cette section
Cours associés (618)
CS-450: Algorithms II
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Afficher plus
MOOCs associés (24)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.