CS-233: Introduction to machine learningMachine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
PHYS-436: Statistical physics IVNoise and fluctuations play a crucial role in science and technology. This course treats stochastic methods, applying them to both classical problems and quantum systems. It emphasizes the frameworks
MATH-449: BiostatisticsThis course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
COM-308: Internet analyticsInternet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number
CS-456: Deep reinforcement learningThis course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
MATH-665: Functional Data AnalysisA rigorous introduction to the statistical analysis of random functions and associated random operators. Viewing random functions either as random Hilbert vectors or as stochastic processes, we will s
ME-213: Programmation pour ingénieurMettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio