CS-526: Learning theoryMachine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.
CS-411: Digital educationThis course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
MGT-502: Data science and machine learningHands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
MATH-336: Randomization and causationThis course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
PHYS-216: Mathematical methods (for SPH)Ce cours est un complément aux cours d'analyse et d'algèbre linéaire qui apporte des méthodes et des techniques mathématiques supplémentaires requises pour les cours de physique de 3e année, notamment
PHYS-442: Modeling and design of experimentsIn the academic or industrial world, to optimize a system, it is necessary to establish strategies for the experimental approach. The DOE allows you to choose the best set of measurement points to min