Cours

MATH-562: Statistical inference

Cours associés (215)
MICRO-513: Signal processing for functional brain imaging
Computational methods for the analysis of human brain imaging data
MGT-618: Computational research methods for social sciences
The objective of this course is to introduce doctoral students to computational methods for data-driven research in the social sciences.
MGT-492: Data science and machine learning I
This class provides a hands-on introduction to data science and machine learning topics, exploring areas such as data acquisition and cleaning, regression, classification, clustering, neural networks,
ENV-521: Multivariate statistics with R in environment
Introduction to multivariate data analysis and modelling. The course helps for a critical choice of methods and their integration in a research planning. It prepares for complexe data analysis in vari
MATH-685: Learning Theory of Nonparametric Regression
This course is intended to give a brief overview of how to prove consistency results in nonparametric regression. In particular, we will focus on least-square regression estimators. Some connections t
EE-605: Statistical Sequence Processing
This course discusses advanced methods extensively used for the processing, prediction, and classification of temporal (multi-dimensional and multi-channel) sequences. In this context, it also describ
BIO-465: Biological modeling of neural networks
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
MATH-495: Mathematical quantum mechanics
Quantum mechanics is one of the most successful physical theories. This course presents the mathematical formalism (functional analysis and spectral theory) that underlies quantum mechanics. It is sim
MATH-455: Combinatorial statistics
The class will cover statistical models and statistical learning problems involving discrete structures. It starts with an overview of basic random graphs and discrete probability results. It then cov
ME-344: Incompressible fluid mechanics
Basic lecture in incompressible fluid mechanics

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.