Cours

NX-435: Systems neuroscience

Cours associés (74)
BIO-369: Randomness and information in biological data
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
NX-414: Brain-like computation and intelligence
Recent advances in machine learning have contributed to the emergence of powerful models of animal perception and behavior. In this course we will compare the behavior and underlying mechanisms in the
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-479: Learning in neural networks
Artificial Neural Networks are inspired by Biological Neural Networks. One big difference is that optimization in Deep Learning is done with the BackProp Algorithm, whereas in biological neural netwo
PHYS-754: Lecture series on scientific machine learning
This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.
BIO-321: Morphology II
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
CH-411: Cellular signalling
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t
BIO-493: Scientific project design in integrative neurosciences
This course will provide a forum in which students engage themselves in learning how to design an integrative neuroscience research project that bridges scales to allow a causal mechanistic analysis o
BIO-320: Morphology I
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie), microscopique (histologie) du corps humain.
CS-433: Machine learning
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.