Le paysage d'optimisation de Convex caché des réseaux neuronaux profonds
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discuter de la façon dont l'apprentissage de caractéristiques éparses peut conduire à une suradaptation dans les réseaux neuraux malgré des preuves empiriques de généralisation.
Analyse la descente du gradient sur les réseaux neuraux ReLU à deux couches, en explorant la convergence globale, la régularisation, les biais implicites et l'efficacité statistique.
Couvre l'importance de la maintenance préventive pour la détection de la détresse de la chaussée et introduit des concepts d'apprentissage automatique pour les ingénieurs.
Déplacez-vous dans l'informatique optique en utilisant la diffusion de la lumière pour les tâches d'apprentissage automatique, en explorant la façonnage de front d'onde et les outils de calcul.
Explore l'apprentissage bio-inspiré avec des réseaux neuronaux et des algorithmes génétiques, couvrant la structure, la formation et les applications pratiques.
Explore le paradigme de l'apprentissage profond, y compris les défis, les réseaux neuronaux, la robustesse, l'équité, l'interprétabilité et l'efficacité énergétique.