Séance de cours

Prétraitement des données : Défis liés au traitement

Séances de cours associées (32)
Prévision de retour des stocks
Couvre les défis et les techniques de prévision du rendement des stocks à l'aide d'un apprentissage supervisé.
Clustering: Théorie et pratique
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Introduction à l'apprentissage automatique : apprentissage supervisé
Introduit l'apprentissage supervisé, couvrant la classification, la régression, l'optimisation des modèles, le surajustement, et les méthodes du noyau.
Analyse des composantes principales : réduction de la dimensionnalité
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Aperçu de l'apprentissage supervisé
Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Fondements de l'apprentissage automatique
Couvre les principes fondamentaux et les méthodes de l'apprentissage automatique, y compris les techniques d'apprentissage supervisé et non supervisé.
Représentation des données : PCA
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Réseaux neuronaux récurrents : Détection de la langue
Explore la détection des langues à l'aide de réseaux neuronaux récurrents et de concepts d'apprentissage supervisé.
Regroupement: K-means & LDA
Couvre le clustering en utilisant les propriétés K-means et LDA, PCA, K-means, Fisher LDA et le clustering spectral.
Apprentissage non supervisé : réduction de la dimensionnalité et regroupement
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.