Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité, les algorithmes et leurs applications pour assurer une convergence efficace vers les minima mondiaux.
Explore les méthodes d'optimisation primal-dual, les algorithmes, la convergence et les applications dans l'optimisation non convexe et la déconvolution d'image.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.