Explore l'inférence des connaissances pour les graphiques, en discutant de la propagation des étiquettes, des objectifs d'optimisation et du comportement probabiliste.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Explore la désambiguïsation des entités, reliant les mentions de texte à une base de connaissances, la cohérence dans les graphes d'entités et le PageRank personnalisé.
Couvre les bases de l'apprentissage automatique, les défis en matière de déploiement, les attaques contradictoires et les préoccupations en matière de protection de la vie privée.
Explore l'apprentissage supervisé en matière de tarification des actifs, en mettant l'accent sur les défis de la prévision du rendement des actions et l'évaluation des modèles.