Études de données critiques : Introduction et modèles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les implications éthiques du déploiement d'algorithmes d'apprentissage automatique et souligne l'importance de l'équité dans les processus décisionnels.
Plonge dans l'impact des biais dans les modèles d'apprentissage automatique et l'importance d'évaluer les dommages potentiels dans le développement de tels systèmes.
Discute de l'alignement entre les entreprises et les TI, de l'évolution du développement logiciel et du prototypage avec Pega, en mettant l'accent sur les besoins des intervenants et la collaboration.
Examine les défis que posent les hypothèses de données, les biais et d'autres aspects de la recherche, y compris les écritures incomplètes et les frustrations des nouveaux arrivants.