Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Explore l'échantillonnage de l'ensemble canonique, des fluctuations de température, de la distribution lagrangienne étendue et de Maxwell-Boltzmann dans les simulations de dynamique moléculaire.
Couvre les inégalités de concentration et les méthodes d'échantillonnage pour estimer les distributions inconnues, en mettant l'accent sur les taux d'infection de la population.
Discute des concepts statistiques clés, y compris les dangers d'échantillonnage, les inégalités et le théorème de la limite centrale, avec des exemples pratiques et des applications.