Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'estimation de la vraisemblance maximale pour estimer les paramètres en maximisant la précision de la prédiction, en démontrant par un exemple simple et en discutant de la validité par le biais de tests d'hypothèses.
Couvre les critères d'estimation des paramètres, en soulignant l'importance de la cohérence, du biais, de la variance et de l'efficacité des estimateurs.
Discute de l'inférence bayésienne pour la moyenne d'une distribution gaussienne avec variance connue, couvrant la moyenne postérieure, la variance et l'estimateur MAP.