Explore les signaux, les instruments et les systèmes, couvrant ADC, Fourier Transform, échantillonnage, reconstruction des signaux, alias et filtres anti-alias.
Explore les techniques de Monte Carlo pour l'échantillonnage et la simulation, couvrant l'intégration, l'échantillonnage d'importance, l'ergonomie, l'équilibrage et l'acceptation de Metropolis.
Explore les signaux filtrants avec un filtre moyen mobile et le processus d'échantillonnage, soulignant l'importance de la reconstruction des signaux à partir des échantillons.
Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.
Couvre la théorie et les applications de la coloration graphique, en se concentrant sur les modèles de blocs stochastiques dissortatifs et la coloration plantée.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.