Mathématiques des données : modèles et apprentissage
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les produits intelligents et connectés et leur impact transformateur sur les entreprises, couvrant l'intelligence artificielle, l'apprentissage automatique, les modèles prédictifs, les méthodes de prévision et plus encore.
Couvre les techniques de réduction de la variance dans l'optimisation, en mettant l'accent sur la descente en gradient et les méthodes de descente en gradient stochastique.
Introduit le traitement du langage naturel (NLP) et ses applications, couvrant la tokenisation, l'apprentissage automatique, l'analyse du sentiment et les applications NLP suisses.
Se penche sur les défis de l'apprentissage supervisé en science citoyenne, en mettant l'accent sur la reconnaissance des espèces végétales et l'agrégation des étiquettes.
Discute des défis dans les systèmes d'IA, des limitations d'apprentissage supervisé, et de la nécessité de méthodes fondées sur les données pour renforcer l'apprentissage.
Introduit des bases d'apprentissage automatique, couvrant la segmentation des données, le regroupement, la classification, et des applications pratiques comme la classification d'image et la similarité du visage.