Régression linéaire : Inférence statistique et régularisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la régression linéaire à travers les moindres carrés et les équations normales, en soulignant l'importance de minimiser les erreurs pour des prédictions précises.
Couvre l'analyse des données bivariées, la corrélation et les techniques de régression, y compris l'interprétation des coefficients et de la géométrie des moindres carrés.
Explore les régressions OLS pour les prix des maisons, couvrant les valeurs aberrantes, les observations influentes, les spécifications du modèle et les stratégies de sélection.
Introduit des variables instrumentales pour résoudre les problèmes d'endogenèse, en utilisant des exemples pour illustrer les applications pratiques et les exigences d'essai.
Explore l'hétéroscédasticité et l'autocorrélation en économétrie, couvrant les implications, les applications, les méthodes de test et les conséquences des tests d'hypothèses.