Mécanique quantiqueLa mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
Problème de la mesure quantiqueLe problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.
Squeezed coherent stateIn physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle: and , respectively.
Philosophie de la physiqueEn philosophie des sciences, la philosophie de la physique étudie les questions fondamentales sous-jacentes à la physique moderne, soit l'étude de la matière et de l'énergie et la façon dont elles interagissent. La philosophie de la physique se penche sur les questions métaphysiques et épistémologiques essentielles que pose la physique : la causalité, le déterminisme, et la nature d'une loi physique.
Ensemble bien ordonnéEn mathématiques, un ensemble ordonné (E, ≤) est bien ordonné et la relation ≤ est un bon ordre si la condition suivante est satisfaite : Toute partie non vide de E possède un plus petit élément. Formellement cela donne ∀X⊆E, X≠∅ ⇒ (∃u∈X, ∀v∈X u≤v). Si (E, ≤) est bien ordonné alors ≤ est nécessairement un ordre total, c'est-à-dire que deux éléments quelconques x et y de E sont toujours comparables. En effet, l'ensemble { x, y } possède un plus petit élément, donc on a x ≤ y ou y ≤ x.