Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la détection et la correction des erreurs de paramètres dans les réseaux électriques, en mettant l'accent sur les propriétés statistiques, l'identification des erreurs, l'efficacité de calcul, l'analyse de sensibilité et l'estimation robuste de l'état.
Explore les fondamentaux de la régression linéaire, les problèmes de régression non linéaire et la bonté de l'ajustement au carré R, avec des exemples tels que le quatuor d'Anscombe et l'ensemble de données Datasaurus.
Explore une régression robuste dans l'analyse des données génomiques, en mettant l'accent sur la pondération des résidus importants pour une meilleure précision des estimations et des mesures d'évaluation de la qualité telles que NUSE et RLE.
Couvre l'autocorrélation, la dépendance spatiale et les défis de modélisation dans les SIG, soulignant l'importance des données historiques et des méthodes statistiques.