Explore les noyaux pour simplifier la représentation des données et la rendre linéairement séparable dans les espaces de fonctionnalités, y compris les fonctions populaires et les exercices pratiques.
Introduit des machines vectorielles de support, couvrant la perte de charnière, la séparation hyperplane et la classification non linéaire à l'aide de noyaux.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Couvre le clustering, la classification et le support des principes, des applications et de l'optimisation des machines vectorielles, y compris la classification non linéaire et les effets du noyau gaussien.
Couvre l'apprentissage supervisé, la classification, la régression, les limites de décision, le surajustement, Perceptron, SVM et la régression logistique.