Couvre les bases du traitement d'images pour la microscopie, y compris l'acquisition, la correction des défauts, l'amélioration des images et l'extraction d'informations.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.
Explore le développement d'intégrations contextuelles dans le NLP, en mettant l'accent sur les progrès réalisés par ELMo et BERT et son impact sur les tâches du NLP.
Couvre les principes fondamentaux du traitement de l'image scientifique, les pratiques logicielles et les considérations éthiques dans le traitement de l'image.