Explore la formulation faible et la méthode Galerkin dans les applications de la méthode des éléments finis, y compris les conditions limites et les systèmes linéaires d'équations.
Explore l'approche locale de la méthode des éléments finis, couvrant les fonctions de forme nodale, les restrictions de solution, les tailles, les conditions aux limites et les opérations d'assemblage.
Discute des différences finies et des éléments finis, en se concentrant sur la formulation variationnelle et les méthodes numériques dans les applications d'ingénierie.
Explore l'estimation des erreurs a priori dans la méthode des éléments finis, couvrant l'analyse de convergence, l'orthogonalité, les formulations faibles et la précision optimale.