Évaluation du modèle et réglage de l'hyperparamètre
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'apprentissage supervisé, la classification, la régression, les limites de décision, le surajustement, Perceptron, SVM et la régression logistique.
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Couvre les bases de l'apprentissage automatique, y compris la reconnaissance des chiffres manuscrits, la classification supervisée, les limites de décision et l'ajustement des courbes polynômes.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.