Discute de la descente de gradient stochastique et de son application dans l'optimisation non convexe, en se concentrant sur les taux de convergence et les défis de l'apprentissage automatique.
Explore l'optimisation non convexe dans l'apprentissage profond, couvrant les points critiques, la convergence SGD, les points de selle et les méthodes de gradient adaptatif.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.