Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les critères d'estimation des paramètres, en soulignant l'importance de la cohérence, du biais, de la variance et de l'efficacité des estimateurs.
Introduit une estimation de la probabilité maximale pour l'estimation des paramètres statistiques, couvrant le biais, la variance et l'erreur carrée moyenne.
Couvre l'estimation de la densité du noyau axée sur la sélection de la bande passante, la malédiction de la dimensionnalité, le compromis entre les biais et les modèles paramétriques et non paramétriques.
Explore l'estimation de la variance, la création d'estimateurs personnels, la correction du biais et la compréhension de l'erreur carrée moyenne dans l'analyse statistique.