Analyse des composantes principales : Introduction
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage par machine contradictoire, les réseaux d'adversaires génériques et les défis des exemples d'adversaires dans l'optimisation des données.
Explore le nettoyage de la matrice de covariance, les estimateurs optimaux et les méthodes invariantes en rotation pour l'optimisation du portefeuille.
Explique lestimation, la corrélation et la corrélation Pearson dans les statistiques, en se concentrant sur la mesure et la description des relations entre les variables.
Explore la réduction des dimensions linéaires grâce à la PCA, à la maximisation de la variance et à des applications réelles telles que l'analyse des données médicales.
Couvre les bases de l'optimisation, y compris les métriques, les normes, la convexité, les gradients et la régression logistique, en mettant l'accent sur les forts taux de convexité et de convergence.
Explore la théorie du filtrage Kalman, en mettant l'accent sur les innovations, les prédictions et les applications pratiques dans l'estimation de la position et de la vitesse du véhicule.