Apprentissage automatique et protection de la vie privée
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'évolution historique et les aspects juridiques des lois sur la protection des données, des instruments internationaux, des défis du suivi en ligne, des bases juridiques pour le traitement des données à caractère personnel et des règles de confidentialité.
Couvre les principes et les stratégies de l'ingénierie de la protection de la vie privée, en soulignant l'importance d'intégrer la protection de la vie privée dans les systèmes de TI et les défis à relever pour atteindre la protection de la vie privée par la conception.
Explore le cadre juridique suisse sur la protection des données, la vie privée, la cybercriminalité et le rôle du Commissaire fédéral à la protection des données.
Introduit des exercices Jupyter sur la confidentialité différentielle, couvrant les générateurs aléatoires, la compréhension de l'impact d'intrusion de données, et les applications pratiques.
Explore les notions de protection de la vie privée, la législation et les efforts de défense des droits pour protéger les données des personnes par le biais de changements systémiques et d'approches multidisciplinaires.
Explore les technologies d'identité, l'identification autonome, les systèmes fédérés, les mécanismes de protection de la vie privée et la confiance dans les services en ligne.
Explore RAPPOR, la confidentialité différentielle, la mise en œuvre d'Apple, le clustering de k-means et les défis liés à la mise en œuvre de la confidentialité différentielle.