Factorisation des matrices : Optimisation et évaluation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Explore les systèmes de recommandation, le filtrage collaboratif, les recommandations basées sur le contenu, les mesures de similarité et les méthodes avancées telles que la factorisation matricielle.
Introduit les systèmes de recommandation, le filtrage collaboratif, la recommandation basée sur le contenu, les paramètres de similitude et la factorisation matricielle.