Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.
Intensifier l'apprentissage avec la rétroaction humaine, discuter de la convergence des estimateurs et introduire une approche pessimiste pour améliorer les performances.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Couvre les méthodes de gradient de politique, en mettant l'accent sur l'apprentissage par l'action directe et l'optimisation des récompenses dans l'apprentissage par renforcement.
Couvre MuZero, un modèle qui apprend à prédire les récompenses et les actions de manière itérative, réalisant des performances de pointe dans les jeux de société et les jeux vidéo Atari.
Explore l'optimisation des politiques proximales pour améliorer la stabilité et l'efficacité du contrôle continu avec un apprentissage par renforcement profond.