Renforcement de l'apprentissage : bases et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les défis de l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la modélisation du comportement social et la prévision de trajectoire réalisable.
Explore la recherche de bugs, la vérification et l'utilisation d'approches aidées à l'apprentissage dans le raisonnement de programme, montrant des exemples comme le bug Heartbleed et le raisonnement bayésien différentiel.
Explore les sujets d'apprentissage avancés du renforcement, y compris les politiques, les fonctions de valeur, la récursion de Bellman et le contrôle de la TD sur les politiques.
Explore des modèles générateurs pour la prévision de trajectoires dans les véhicules autonomes, y compris des modèles discriminatifs vs générateurs, VAES, GANS, et des études de cas.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore les modèles prédictifs et les traceurs pour les véhicules autonomes, couvrant la détection d'objets, les défis de suivi, le suivi en réseau neuronal et la localisation des piétons en 3D.
Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.