Traitement du flux de données : Apache Kafka et Spark
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les outils collaboratifs de science des données, les concepts de big data, Spark, et le traitement du flux de données, avec des conseils pour le projet final.
Explore l'importance de la reproductibilité dans la science des données et présente Renku, une plate-forme pour la gestion de projets axés sur les données.
Explore la précision des données par l'évaluation de la fidélité, la détection des erreurs, la manipulation aberrante, les corrélations, les dépendances fonctionnelles, la détection des violations, les contraintes de déni et les techniques de réparation des données.
Explore les techniques de résolution d'entités, la déduplication des données, les métriques de similitude, le coût de calcul, les techniques de blocage et l'échelle des jointures de similarité.
Introduit le traitement de flux de données, couvrant le traitement par lots vs le traitement de flux, des informations en temps réel, des applications, des défis et des outils comme Apache Kafka et Spark Streaming.