Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage automatique efficace par la synthèse des données, couvrant les défis, les méthodes et les applications impactées dans divers domaines.
Explore les réseaux neuronaux récurrents pour les données comportementales, couvrant le repérage de connaissances profondes, les réseaux LSTM, GRU, le réglage hyperparamétrique et les tâches de prévision de séries chronologiques.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Explore l'histoire, les modèles, la formation, la convergence et les limites des réseaux neuronaux, y compris l'algorithme de rétropropagation et l'approximation universelle.
Discute des défis liés à la construction de réseaux neuraux physiques, en mettant l'accent sur la profondeur, les connexions et la capacité de formation.