Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Explore Kernel K- signifie regroupement, interprétation des solutions, traitement des données manquantes, et sélection des ensembles de données pour l'apprentissage automatique.
Couvre les principes et les méthodes de regroupement dans l'apprentissage automatique, y compris les mesures de similarité, la projection de l'APC, les moyennes K et l'impact de l'initialisation.
Introduit la méthode k-means du noyau pour former des grappes non convexes et discute du regroupement par densité pour identifier les régions denses dans les ensembles de données.