Couvre le potentiel et les limites des techniques de vectorialisation automatique pour numériser des objets à partir de documents ou d'images numérisés.
Introduit des notions fondamentales dans le filtrage numérique, couvrant les approches de filtrage 2D, les filtres linéaires, la stabilité, les filtres FIR et IIR, le filtrage de domaine de fréquence et les filtres gaussiens.
Couvre les bases du traitement d'images pour la microscopie, y compris l'acquisition, la correction des défauts, l'amélioration des images et l'extraction d'informations.
Introduit les bases du traitement d'image, couvrant les images vectoriels vs matrices, le système de couleurs RGB, l'échelle de gris, et les bibliothèques de manipulation d'image.
Discute de l'analyse des textures dans les images, en se concentrant sur les propriétés statistiques et structurelles, les techniques de segmentation et les applications d'apprentissage automatique pour la classification des textures.