Explore l'importance de l'analyse comparative entre les sexes dans la recherche de mise en oeuvre sur les maladies de la pauvreté, en mettant l'accent sur les objectifs transformatifs et l'inclusivité.
Examine les défis que posent les hypothèses de données, les biais et d'autres aspects de la recherche, y compris les écritures incomplètes et les frustrations des nouveaux arrivants.
Introduit des concepts d'apprentissage automatique appliqués tels que la collecte de données, l'ingénierie des caractéristiques, la sélection des modèles et les mesures d'évaluation du rendement.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Discute des techniques d'imagerie, en se concentrant sur les distorsions géométriques et radiométriques dans la photographie aérienne et leurs implications pour l'interprétation des données.
Explore l'apprentissage automatique atomistique, intégrant les principes physiques dans les modèles pour prédire avec précision les propriétés moléculaires.
Présente une description de projet pour la construction de chatbots éducatifs à l'aide de modèles de type ChatGPT, décrivant les étapes, les politiques et le partage de données à des fins de recherche.