Optimisation des requêtes : introduction et équivalences
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases du modèle relationnel dans les systèmes de gestion de bases de données, y compris les modèles de données, les clés primaires et étrangères.
Couvre l'optimisation des requêtes relationnelles, y compris les plans de requêtes logiques et physiques, l'estimation des coûts, les équivalences et la stratégie du système R.
Couvre efficacement l'optimisation de joint accéléré GPU pour les requêtes complexes, en se concentrant sur l'amélioration des temps d'optimisation et de la qualité du plan heuristique.
Couvre les bases de données relationnelles, les transactions et la cohérence des données dans le contexte des typologies historiques des bases de données.
Discute de l'optimisation de joint accéléré GPU efficace pour les requêtes complexes, visant à améliorer les temps d'optimisation et la qualité du plan heuristique.
Explore les équivalences d'algèbre relationnelle pour optimiser les performances des requêtes grâce à une génération de tuple efficace et à des opérations de jointure.