Explore les sujets avancés de Spark comme les stratégies de partitionnement, l'optimisation de la mémoire et les opérations de shuffle pour une exécution efficace des tâches.
Explore la transition des algorithmes aux programmes par la compilation, en mettant l'accent sur les contraintes et les pratiques de codage compréhensibles par la machine.
Explore la factorisation matricielle dans les systèmes de recommandation, couvrant l'optimisation, les mesures d'évaluation et les défis liés à la mise à l'échelle.
Discuter de la prévision du temps d'achèvement et de l'optimisation des activités grâce à des stratégies d'orchestration efficaces et à des prévisions de courbes d'achèvement fondées sur l'expérience.