Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Couvre les méthodes d'optimisation, les garanties de convergence, les compromis et les techniques de réduction de la variance en optimisation numérique.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Couvre les méthodes de descente de gradient pour les problèmes convexes et non convexes, y compris la minimisation convexe lisse sans contrainte, lestimation de la vraisemblance maximale, et des exemples comme la régression de crête et la classification dimage.
Couvre l'optimalité des taux de convergence dans les méthodes de descente en gradient accéléré et stochastique pour les problèmes d'optimisation non convexes.
Introduit des opérateurs proximaux, des méthodes de gradient et une optimisation contrainte, explorant leur convergence et leurs applications pratiques.