Modèles Vision-Langue-Action : Formation et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de Pytorch avec les ensembles de données MNIST et Digits, en mettant l'accent sur la formation des réseaux neuronaux pour la reconnaissance manuscrite des chiffres.
Couvre le filtrage adaptatif à l'aide de l'algorithme LMS pour les scénarios d'enregistrement immobile, en mettant l'accent sur la mise en œuvre pratique dans MATLAB.
Explore les machines hydrauliques dans des conditions transitoires et les applications hydroacoustiques pour les installations hydroélectriques, couvrant les cheminées d'équilibre, la cavitation à diaphragme et la stabilité des turbines.
Explore l'avancement des modèles système de l'intelligence humaine au moyen d'analyses comparatives intégrées et de l'importance de Brain-Score pour des comparaisons équitables de modèles.
Explore la logique de la fonction neuronale, le modèle Perceptron, les applications d'apprentissage profond et les niveaux d'abstraction dans les modèles neuronaux.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.
Explore les modèles de préformation comme BERT, T5 et GPT, en discutant de leurs objectifs de formation et de leurs applications dans le traitement des langues naturelles.