Introduit des méthodes de regroupement hiérarchique et k-means, en discutant des approches de construction, des fonctions de liaison, de la méthode de Ward, de l'algorithme Lloyd et de k-means++.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Couvre les fondamentaux de l'apprentissage automatique avancé, mettant l'accent sur les applications pratiques par des exercices et des projets interactifs.