Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique les estimateurs statistiques pour les variables aléatoires et les distributions gaussiennes, en se concentrant sur les fonctions d'erreur pour l'intégration.
Introduit des concepts d'inférence statistique, en se concentrant sur l'estimation des paramètres, les estimateurs non biaisés et l'estimation moyenne à l'aide de variables aléatoires indépendantes.
Explore l'estimation stochastique du modèle de bloc, le regroupement spectral, la modularité du réseau, la matrice laplacienne et le regroupement des moyennes k.
Explorer l'estimation du rétrécissement des matrices de covariance à haute dimension, en comparant les approches linéaires et non linéaires pour une meilleure précision.