Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore des statistiques suffisantes, la compression des données et leur rôle dans l'inférence statistique, avec des exemples comme Bernoulli Trials et des familles exponentielles.
Couvre les modèles d'estimation statistique, les estimateurs de ML, les machines d'apprentissage, les problèmes pratiques et les défis de l'estimation.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Explore l'apprentissage des modèles graphiques avec les estimateurs M, la régression des processus Gaussiens, la modélisation Google PageRank, l'estimation de la densité et les modèles linéaires généralisés.
Explore l'estimation de la variance, la création d'estimateurs personnels, la correction du biais et la compréhension de l'erreur carrée moyenne dans l'analyse statistique.