Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Explore le rôle du calcul dans les mathématiques de données, en mettant l'accent sur les méthodes itératives, l'optimisation, les estimateurs et les principes d'ascendance.
Introduit la méthode de Newton pour résoudre les équations non linéaires itérativement, en soulignant sa convergence rapide, mais aussi son incapacité potentielle à converger dans certains cas.
Couvre les méthodes de recherche de ligne de gradient et les techniques d'optimisation en mettant l'accent sur les conditions Wolfe et la définition positive.
Explore les méthodes de gradient adaptatif comme AdaGrad, AcceleGrad et UniXGrad, en se concentrant sur leurs taux d'adaptation et de convergence locaux.
Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.