Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Réfléchir aux défis de la définition de l’intelligence et de la conscience de soi dans le contexte de l’IA, en explorant les implications éthiques et les limites des entités artificielles dans la société.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore la probabilité en mécanique quantique, en se concentrant sur les résultats de mesure et le rôle de la conscience dans la détermination des perceptions.
Explore les bases de la neuroimagerie, les échelles du réseau cérébral, la connectivité, l'histoire et la physique, soulignant l'importance de comprendre les données à différentes échelles.
Couvre les bases de la connectomique cérébrale, y compris les réseaux du cerveau, la terminologie, les schémas de données, le prétraitement, la connectivité des noeuds et la structure fonctionnelle du connectome.
Introduit les bases de la connectomique cérébrale, y compris la terminologie, le prétraitement des données, l'IRM fonctionnelle, les mesures de connectivité et la structure modulaire.
Couvre l'analyse des fenêtres coulissantes, l'analyse des processus ponctuels et les modèles auto-régressifs dans la connectivité fonctionnelle dynamique.