Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Introduit des arbres de décision pour la classification, couvrant l'entropie, la qualité fractionnée, l'indice Gini, les avantages, les inconvénients, et le classificateur forestier aléatoire.